Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 202(7): 2019, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32322912

RESUMO

In the original article, the funding information was incorrectly published.

2.
J Virol ; 94(11)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188734

RESUMO

Virophages are small parasitic double-stranded DNA (dsDNA) viruses of giant dsDNA viruses infecting unicellular eukaryotes. Except for a few isolated virophages characterized by parasitization mechanisms, features of virophages discovered in metagenomic data sets remain largely unknown. Here, the complete genomes of seven virophages (26.6 to 31.5 kbp) and four large DNA viruses (190.4 to 392.5 kbp) that coexist in the freshwater lake Dishui Lake, Shanghai, China, have been identified based on environmental metagenomic investigation. Both genomic and phylogenetic analyses indicate that Dishui Lake virophages (DSLVs) are closely related to each other and to other lake virophages, and Dishui Lake large DNA viruses are affiliated with the micro-green alga-infecting Prasinovirus of the Phycodnaviridae (named Dishui Lake phycodnaviruses [DSLPVs]) and protist (protozoan and alga)-infecting Mimiviridae (named Dishui Lake large alga virus [DSLLAV]). The DSLVs possess more genes with closer homology to that of large alga viruses than to that of giant protozoan viruses. Furthermore, the DSLVs are strongly associated with large green alga viruses, including DSLPV4 and DSLLAV1, based on codon usage as well as oligonucleotide frequency and correlation analyses. Surprisingly, a nonhomologous CRISPR-Cas like system is found in DSLLAV1, which appears to protect DSLLAV1 from the parasitization of DSLV5 and DSLV8. These results suggest that novel cell-virus-virophage (CVv) tripartite infection systems of green algae, large green alga virus (Phycodnaviridae- and Mimiviridae-related), and virophage exist in Dishui Lake, which will contribute to further deep investigations of the evolutionary interaction of virophages and large alga viruses as well as of the essential roles that the CVv plays in the ecology of algae.IMPORTANCE Virophages are small parasitizing viruses of large/giant viruses. To our knowledge, the few isolated virophages all parasitize giant protozoan viruses (Mimiviridae) for propagation and form a tripartite infection system with hosts, here named the cell-virus-virophage (CVv) system. However, the CVv system remains largely unknown in environmental metagenomic data sets. In this study, we systematically investigated the metagenomic data set from the freshwater lake Dishui Lake, Shanghai, China. Consequently, four novel large alga viruses and seven virophages were discovered to coexist in Dishui Lake. Surprisingly, a novel CVv tripartite infection system comprising green algae, large green alga viruses (Phycodnaviridae- and Mimiviridae-related), and virophages was identified based on genetic link, genomic signature, and CRISPR system analyses. Meanwhile, a nonhomologous CRISPR-like system was found in Dishui Lake large alga viruses, which appears to protect the virus host from the infection of Dishui Lake virophages (DSLVs). These findings are critical to give insight into the potential significance of CVv in global evolution and ecology.


Assuntos
Clorófitas/virologia , DNA Viral/genética , Filogenia , Virófagos , Microbiologia da Água , China , Lagos , Metagenômica , Virófagos/classificação , Virófagos/genética
3.
Arch Microbiol ; 202(5): 1097-1106, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32040595

RESUMO

Vibrios are a group of very important bacterial pathogens in marine aquaculture industry and cause serious aquatic animal diseases, such as shrimp acute hepatopancreatic necrosis disease (AHPND). A new AHPND pathogen, the Vibrio owensii strain SH-14, was isolated from diseased shrimp in Shanghai, China. In this study, to better understand the pathogenesis of AHPND at the genomic level, the genome of the strain SH-14 was completely sequenced and analyzed. The SH-14 consists of two circular chromosomes of 3,689,702 bp and 2,430,445 bp, and of two plasmids named as pVHvo (69,148 bp) and pVHvo-R (78,918 bp), respectively. The pVHvo encodes the bi-toxic genes of pirAB, responsible for shrimp AHPND. The whole genomes contain a total of 5703 predicted open reading frames (ORFs), 129 tRNA genes and 37 rRNA genes. The average nucleotide identities (ANIs) between the SH-14 and the other V. owensii strains are all greater than 95%, confirming a new V. owensii strain of the SH-14. The taxonomic affiliation of the SH-14 is also supported by whole-genome alignment and nucleotide identity dotplot analyses. These results pave the way for further study of spread and epidemic of shrimp AHPND.


Assuntos
Genoma Bacteriano/genética , Hepatopâncreas/microbiologia , Penaeidae/microbiologia , Alimentos Marinhos/microbiologia , Vibrio/genética , Animais , Aquicultura , Sequência de Bases , China , Genômica , Hepatopâncreas/patologia , Plasmídeos/genética , Análise de Sequência de DNA , Vibrio/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...